skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kulkarni, Shruti_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Highly granular pixel detectors allow for increasingly precise measurements of charged particle tracks. Next-generation detectors require that pixel sizes will be further reduced, leading to unprecedented data rates exceeding those foreseen at the High- Luminosity Large Hadron Collider. Signal processing that handles data incoming at a rate of O (40 MHz) and intelligently reduces the data within the pixelated region of the detectorat ratewill enhance physics performance at high luminosity and enable physics analyses that are not currently possible. Using the shape of charge clusters deposited in an array of small pixels, the physical properties of the traversing particle can be extracted with locally customized neural networks. In this first demonstration, we present a neural network that can be embedded into the on-sensor readout and filter out hits from low momentum tracks, reducing the detector’s data volume by 57.1%–75.7%. The network is designed and simulated as a custom readout integrated circuit with 28 nm CMOS technology and is expected to operate at less than 300  μ W with an area of less than 0.2 mm2. The temporal development of charge clusters is investigated to demonstrate possible future performance gains, and there is also a discussion of future algorithmic and technological improvements that could enhance efficiency, data reduction, and power per area. 
    more » « less